Constraint Programming Connections with HPC

Jean-Guillaume FAGES, PhD COSLING CEO

Outline

1 What is Constraint-Programming?

2 How does it work?

3 How does HPC contributes to Constraint-Programming?

What is Constraint-Programming?

A Paradigm

Constraint-Programming

A programming paradigm between AI and OR to solve constrained decision problems in a generic way.

A Paradigm

Constraint-Programming

A programming paradigm between AI and OR to solve constrained decision problems in a generic way.

Problem oriented paradigm

Focus

- It is not about Data (input)
- It is about solving problems
- Models are problem-specific
- ightarrow CP is a generic toolbox to design algorithms

What is Constraint-Programming?

How does it work?

Definition

Constraint Satisfaction Problem (CSP)

Defined by

- a set of variables $X = \{x_1, ..., x_n\}$ (unknowns)
- a set of domains D = {d₁,.., d_n} (possible values)
- a set of constraints $C = \{c_1, .., c_m\}$ (restrictions)

Definition

Constraint Satisfaction Problem (CSP)

Defined by

- a set of variables $X = \{x_1, ..., x_n\}$ (unknowns)
- a set of domains D = {d₁, ..., d_n} (possible values)
- a set of constraints $C = \{c_1, .., c_m\}$ (restrictions)

Variable	Domain	Example
Binary	two integers	$\{0,1\}$
Integer (bounded)	integer interval	$[\![3, 11]\!]$
Integer (enum)	integer set	$\{-2,, 3, 12\}$
Set	(int) set interval	$[\{2\}, \{0, 2, 3, 5\}]$
		[1] 2 , 1] 2]
Graph	graph interval	 3 3 - 5
Real	real interval	[3.14, 12.7]

Definition

Constraint Satisfaction Problem (CSP)

Defined by

- a set of variables $X = \{x_1, ..., x_n\}$ (unknowns)
- a set of domains D = {d₁, ..., d_n} (possible values)
- a set of constraints $C = \{c_1, .., c_m\}$ (restrictions)

Constraints	Examples
Arithmetic	$+,-,\times,\div,=,>,\leq,\neq$
Logical	$\lor, \land, \Rightarrow, \Leftrightarrow$
Set	$\cap, \cup, \subseteq, card, partition$
Global	AllDifferent, Cumulative, Regular, Circuit
Graph	Degrees, NCliques, NSCC, Tree

No restrictions!

Example: TSP


```
// --- Circuit: successors[i] = k <=> once at client i, travel to client k
IntVar[] successors = model.intVarArray("succ",n, 0, n - 1, false);
model.circuit(successors).post();
// ---- Unit travel cost
IntVar[] travelDistances = model.intVarArray(n, min, max, true);
for(int i=0: i<n : i++){</pre>
    model.element(travelDistances[i], distances[i], successors[i]).post();
}
// --- Objective function
IntVar totalDistance = model.intVar("total distance",min*n, max*n, true);
model.sum(travelDistances, "=", totalDistance).post();
model.setObjective(Model.MINIMIZE. totalDistance):
// ---- Solvina
Solver s = model.getSolver();
while (s.solve()){
    System.out.println(totalDistance);
}
```


Constraint Programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it. [Eugene Freuder]

Main algorithm

Solving loop

- Filtering
 - Search space reduction (inconsistent values removal)
 - Propagating deductions until fixpoint
- Search
 - Search space exploration (hypothesis)
 - Applying branching heuristics to compute decisions

Until all variables are fixed to a value (solution)

Main algorithm

Solving loop

- Filtering
 - Search space reduction (inconsistent values removal)
 - Propagating deductions until fixpoint
- Search
 - Search space exploration (hypothesis)
 - Applying branching heuristics to compute decisions

Until all variables are fixed to a value (solution)

Optimization

- Compute solution
- Post z < c (cost of previous solution)

Until no better solution exists

From constraints to filtering

Every constraint comes with one or many **filtering algorithms** to remove inconsistent values (domain modifications)

From constraints to filtering

Every constraint comes with one or many **filtering algorithms** to remove inconsistent values (domain modifications)

Example

- $x = \{0, 1, 2, 3, 5, 6\}$ and $y = \{2, 3, 5, 6, 10\}$
- constraint: x > y
- Filtering $x \to y$: $y = \{2, 3, 5, \emptyset, 10\}$
- Filtering $x \leftarrow y$: $x = \{ \emptyset, 1, 2, 3, 5, 6 \}$

From constraints to filtering

Every constraint comes with one or many **filtering algorithms** to remove inconsistent values (domain modifications)

Example: *AllDifferent*

Let
$$X = \{x_1, x_2, x_3\}$$

with $x_1 \in \{1, 2\}$, $x_2 \in \{1, 2\}$ and $x_3 \in \{1, 2, 3\}$
such that $x_1 \neq x_2$, $x_1 \neq x_3$, $x_2 \neq x_3$

$$x_1 \in \{1, 2\}$$
, $x_2 \in \{1, 2\}$ and $x_3 \in \{1, 2, 3\}$

From constraints to filtering

Every constraint comes with one or many **filtering algorithms** to remove inconsistent values (domain modifications)

Scope

- Each filtering algorithm is **local** to a constraint
- Filtering algorithms are called **incrementally** until reaching a fix point

Search

Heuristic domain modification to drive the solving process

- Triggers propagation and filtering
- Guides how to reach a solution

Binary branching

At each node a **decision** (var, op, val) is taken

- Left child: apply decision (guess)
- Right child: negate decision (deduction)

Search heuristics

Which decision (var, op, val) to generate?

Huge impact on results

Many strategies

- Black-box v.s. User-defined strategy
- Best-First v.s. Fail-First principle

How does HPC contributes to Constraint-Programming?

Parallelism

Parallelism

Can we achieve significant gains using parallel computing?

Parallelism

Parallelism

Can we achieve significant gains using parallel computing?

Filtering parallelization

Filtering algorithms could be called in parallel, but:

- Domain cloning overhead
- Unit propagation is (usually) fast
- Propagation is an iterative process
- \Rightarrow Not used in practice

Parallelism

Parallelism

Can we achieve significant gains using parallel computing?

Search parallelization

- Solver portfolios
- Distributed search
 - Work stealing
 - Embarrassingly Parallel Search

Portfolio approaches

Portfolio

- Several instances of same model but Different search strategies run in parallel
- Satisfaction: no communication at all (luck)
- Optimization: Bound sharing (collaboration)

Many strategies

- Exponential speedup
- State-of-the-art for few cores

Portfolio approaches

900

600

300

SolvingTime (s)

Instances

Distributed DFS

Work stealing [Jaffar et. al.]

- Master records solutions & bounds
- Workers (dynamical)
 - Pop or steal node
 - Explore node
 - Push right child in stack

Issue

- Communication cost
- Hard to find a balanced distribution
- Hard to scale beyond 100 cores

Distributed DFS

Embarrassingly Parallel Search [Regin et. al.]

- Static decomposition into consistent subproblems
- Based on depth-bounded DFS
- Communicate with master only when subproblem is solved
- ≈ 40 subproblems per workers \rightarrow balanced workload

lssue

- Almost no communication cost but decomposition cost
- State of the art over large number of cores

EPS speedup

How does HPC contributes to Constraint-Programming?

Distributed DFS

Insight

- Independent subproblems are efficiently solved in parallel
- Automated decomposition may be costly/intricate

Distributed DFS

Insight

- Independent subproblems are efficiently solved in parallel
- Automated decomposition may be costly/intricate

Good news!

It is often possible to decompose a problem

- Stochastic optimization based on different scenarios
- Optimization of different orders (logistics)
- Routing optimization of different areas (transportation)
- Frequent user request presolving (web-app)

Conclusion

HPC

- Simple and affordable
- Pushes forward the limits of Constraint Programming
- Opens real-time application opportunities

Thank you for your attention

Contact

- Jean-Guillaume FAGES, PhD
- jg.fages@cosling.com
- www.cosling.com
- +33683311966

References

Main references

- Handbook of Constraint Programming
- J.-C. Regin, A Filtering Algorithm for Constraints of Difference in CSPs
- Global Constraint Catalogue: http://sofdem.github.io/gccat/
- A. Malapert, J-C. Regin, M. Rezgui: Embarrassingly Parallel Search in Constraint Programming

Journals & conferences

- Artificial Intelligence, Constraints
- CP, CPAIOR, AAAI, ECAI, JFPC