
Making the first solution good!

Jean-Guillaume FAGES, PhD

Charles Prud’homme, PhD

Constraint-Programming

Many business applications
Configuration | Planning | Scheduling | Packing

Used in production for years by many companies
à Mature technology

Constraint-Programming

Constraint	 Programming	 represents	 one	 of	 the	 closest	
approaches	computer	science	has	yet	made	to	the	Holy	Grail	of	
programming:	 the	 user	 states	 the	 problem,	 the	 computer	
solves	it.	[Eugene	Freuder]		
	

A	programming	paradigm	between	AI	and	OR	to	model	and	
solve	constrained	problems	in	a	declara7ve	way.		

Constraint-Programming

Guess what?

Constraint-Programming

They lied!

Counter-Example

Traveling Salesman Problem
•  Everyone knows it
•  Trivial to get a solution
•  Very easy to get a good solution

Yet in CP
•  Tricky to model the cost
•  Cannot scale without “circuit” constraint
•  Require specifying search

²  First solution will be random -> VERY BAD
²  Enumeration will never reach a descent solution

CP is complex!
•  Modeling
•  Global constraints
•  Search procedures

Ø  The code is not so declarative

CP is a technology for experts
•  Experts on challenging problems : OK
•  Poor results on simple problems : KO
Ø  Too often the case in black-box optimization

Constraint-Programming

Objective

Constraint-Programming should be

At least as simple
At least as good

As coding a simple heuristic

Improving Black-box solving

Filtering
Very hard to get generic results

è Search

Black-box search

Existing approaches are Fail-first
•  MinDomain, DomWDeg, ABS, IBS, etc.
•  Designed to escape from unfeasible space

Ø Better not get in!
•  Good for very constrained problems

Ø Very rare ! (to avoid “no solution” you often relax it)
•  Good for optimality certificates

Ø Once you are already close to optimum
Ø Unrealistic on most applications anyway

è Best-first

Best-Impact-Value-Selector

Given a variable X to branch on
•  For each value V in its domain
•  Apply X=V
•  Propagate
•  Record objective LB (UB) bound for minimization (max)
•  Backtrack

•  Select the value with lowest LB (highest UB)

CP variant of MIP’s strong branching
Branching variant of SAC

Best-Impact-Value-Selector

Given a variable X to branch on
•  For each value V in its domain
•  Apply X=V
•  Propagate
•  Record objective LB (UB) bound for minimization (max)
•  Backtrack

•  Select the value with lowest LB (highest UB)

è 1st solution is good!
è 100% generic J
è May be combined with any variable selector

Best-Impact-Value-Selector

Search	 1st	sol	-me	 1st	sol	cost	 Best	sol	cost	(30s)	
DEFAULT	 0.02	 3775	 2043	

Results	on	50-ci7es	TSP	instance	

Best-Impact-Value-Selector

Search	 1st	sol	-me	 1st	sol	cost	 Best	sol	cost	(30s)	
DEFAULT	 0.02	 3775	 2043	

MIN_COST_SUCC	 0.03	 629	 352	

Results	on	50-ci7es	TSP	instance	

Only	1	min	for	an	expert,	but	many	users	would	not	do	it	

Best-Impact-Value-Selector

Search	 1st	sol	-me	 1st	sol	cost	 Best	sol	cost	(30s)	
DEFAULT	 0.02	 3775	 2043	

MIN_COST_SUCC	 0.03	 629	 352	

BEST_IMPACT	 0.60	 455	 327	

Results	on	50-ci7es	TSP	instance	

Best-Impact-Value-Selector

Results	on	MiniZinc	
Challenge	instances	
	
à	Works	well	on	average	

Conclusion

Black-box value selector for optimization
•  Simple
•  Generic
•  Efficient

Used in Choco Solver default configuration
à Helped to win a lot of medals this year! J

Next steps

Next steps: identify (groups of) decision variables
-  Different from variable selector
-  Does not exist in any solver
-  Need to analyze variables & constraints
Ø  Great Challenge!

Jean-Guillaume FAGES, PhD
Co-founder

0683311966
jg.fages@cosling.com
www.cosling.com

Thank you

